Andrea Allievi, independent security researcher
aall86@altervista.org 08/01/2011

TDL4 Analysis Paper: a brief introduction and How to
Debug It

Hi all!

| would like to present the result of my work on this threat. After | have developed an anti TDL 3 System |
analyzed this relative new threat written by the same authors of TDL3 for X64 Systems. Because there
aren’t much analysis paper on internet about this rootkit (or exactly nothing of them that explains how to
debug it), | decided to wrote my own paper. I’'m an Italian security researcher, English is not my native
language, indeed if the reader found some language error, please send me an email (aall86@altervista.org).

Introduction
First of all | need to warn the reader that this guide is about TDL4 new features, it doesn’t cover any of old
TDL3 peculiarity, like port driver infection and many others... The reader can find all the information using
these others analysis papers:

- http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf (very useful one)

- http://www.securelist.com/en/analysis/204792131/TDSS

- http://support.cmclab.net/vn/index.php/topic,6934.0.html

TDL4, unlike its predecessor, uses a completely different installation method. It infect system Mbr and is
fully compatible with x64 systems. Infection is fully encrypted, begin in Mbr (with a simple 20 bytes
encryption method), and in its file system (that uses a RC4 encryption method with physical sector numbers
used as encryption key).

FORGED MBR

The rootkit mbr is quite simple, its only job is to read Rootkit “Idr16” file from its encrypted file system and
transfer control to it. First it read last sector of the current bootable hard disk, with the aid of interrupt 0x13
(function code 0x48 to get total hard disk sector and function code 0x42 to perform the actual reading). Last
sector contains rootkit file table. Mbr program decrypt file table with is own code, then from file table it
gets “ldr16” sectors offset and it reads and decrypt them, remapping entire file in a specific memory
address... It finally transfer control to loader file. Actual int 13 hook is implemented in “Idr16” file.

mov ds:7B2h, dl ; Bx1b2 = buffer che memorizza il drive Index

sub word ptr ds:413h, 16h

mov ax, ds:413h

shl ax, 6 ; AX = Segmento dove viene copiato 1'intero 1dr16
mov ds:674h, ax

mov ah, 48h ; 'H’ ; Read Drive Parameters

mov si, 8C5h ; 0000:08c5 -> Result buffer

mov word ptr ds:8C5h, 1Eh ; Set buffer size

int 13h s DISK -

mov di, 75Bh ; di = "1dr16" string (relative pos: Bx15B)

Figure 1. The Idr16 disk geometry read approach

Copyright© 2011 by Andrea Allievi 1

16 BIT LOADER

“Idr16” file is the rootkit 16 bit loader. It’s a binary file that contains int13 hook, anti driver-signing
enforcement strategy and “kdcom.dll” replacement code. “Idr16” begins its execution from mbr. It first
read and decrypt original mbr (and map it in canonical memory address 0000:7c00) from encrypted rootkit
file system, in a simil-manner as rootkit mbr. It then install its int13 hook routine and finally releases control
to the original system mbr. Windows mbr and boot code run as nothing was modified, not become aware of
alteration.

| have released a big guide on this infection approach for x64 systems available here:
http://www.aall86.altervista.org/guide/X64 MBR_Rootkits.pdf (unfortunately is in italian language, if the
reader is interested on topic, he can use Google to translate it).

In this way the rootkit loader monitor all disk read, and, if it recognize “BcdLibraryBoolean_EmsEnabled”
startup boot configuration data flag, it switches to “BcdOSLoaderBoolean_WinPEMode” one, with the
objective to disable Loader Integrity Check Enforcement (that doesn’t load if the system is in WinPe mode,
the reader would like to check “OslInitializeCodelntegrity” winload function). To restore the original normal
environment, after the fake rootkit “kdcom.dll” was loaded (we will see afterward how the replacement is
done), and before Winload releases control to Nt Kernel, the rootkit switches back the “/MININT” loader
block flag with a senseless “IN/MINT” flag. As result Windows boot process proceed regular in normal
mode...

Value

[Disassembly - Kemel ' \pipe\com_x6
Offset: nt |KiSystenStartup+0xl19c

fEE££800° 02ab3d38 488dad2430feffff lea rsp. [rsp-1D0h]
fE£££800°02ab3d40 488b0OSA9bL3fEEf mow rax,gqword ptr [nt!KeloaderBlock (ff£££800 02aafl2
fEE££800° 02ab3d47 488b4850 mov rcx,guord ptr [rax+50h]
fff££800° 02ab3d4b 488b5058 ov rdx. qword ptr [rax+58h]
FEEE£800° 02ab3ddf ssacabu425nsnununu mov r8.qword ptr gs:[8]
fEE££800° 02ab3dS8 4dB8b4004 r8.qword ptr [r8+4]
fEE££800° 02ab3dSe 654c39042553010000 nov qword ptr gs:[1ABh].r8
fEf££800° 02ab3d6S 4cBb4848 nowv r9.gword ptr [rax+48h]
fEEf££800° 02ab3d69 458b5124 nov rl0d.dvord ptr [r9+24h]
‘02ab3ded 4cB89542420 mow qword ptr [rsp+20h].rl0
"02ab3d72 4689442428 qword ptr [rsp+28h].rax
‘02ab3d77 =804270100 ntJKzIn;t:allzeKernel

dg
“02ab3d8g

fffffBUU 02ac6480

ISp-LLLLLOUUUIL/ el Uy
kd> ln f££££80000818fb0

kd> dt _LOADER_PARAMETER_BLOCK ff£££80000818£b0
nt!_LOADER_PARAMETER_BLOCK

+0z000 OsMajorVersion : B
+0x004 OsMinorVersion : 1
+0x008 Size : O=f0

+0200c Reserved 0

+0x010 LoadOrderLlstHead : _LIST_ENTRY [Oxff£f£ff800° 00837330 - Oxfff££800° 008fb220]

+0%020 MemoryDescriptorListHead : _LIST_ENTRY [Oxffff£800° 00a05000 — Oxfffff800° 00a06540]
+0x030 BootDr1ver113tHead : _LIST_ENTRY [OxfffffB00° 008f2e00 - Oxffff£B800° 008£0ad0]

+0x040 KernelStack Oxf££££800° 03273000
+0x048 Prcb :

+0x050 Process © Dxf££££800°02a00140
+0x058 Thread ; Oxff£££800°023ffc40
+0x060 Registrylength . D=xag000

+0z068 RegistryBase : Oxf££££800°01c05000

+0x070 ConfigurationRoot : Oxfffff800°008243b0 _CONFIGURATION_COMPONENT_DATA
+0x078 ArcBootDeviceNanme : Oxff£f£800° 00825000 ‘“multi(0)disk(0)rdisk(0)partition(2)"”
+0x080 ArcHalDeviceName @ Oxfffff800° 00824d70 “multi(0)disk(0)rdisk(0)partition(1)”

+0x0d0 FirmvareInformation : FIHHUARE INFORMATION_LOADER_BLOCK

+0x088 NtBootPathHame . Oxff£££800°0081ebb0 ““Windows\"

f +0x090 NtHalPathName ;o DOxf££££800°0081b380 "~"
i +0x098 LoadOptions : Oxfff££800°008lacbl "NOEXECUTE=OPTIN DEEUG DEBUGPORT=COM1 BAUDRATE=115200 |[IN MINT"
5 +0x0al NlsData : Oxff£££800° 008£30£0 _NLS_DATA_BLOCK |
I +0x0a8 ArcDiskInformation : Oxfffff800° 00826610 _ARC_DISK INFORMATION E
it +0x0b0 OemFontFile : Oxff£££800° 00bfbld0
It +0x0b8 Extension : Oxf£E£££800° 00825040 _LOADER_PARAMETER_EXTENSION
) +0x0c0 u <unnamed-ta
It
It

i

Copyright© 2011 by Andrea Allievi 2

Figure 2. Infected machine’s Nt Loader block. It's noteworthy “LoadOptions” field that highlights “IN MINT” rootkit options

As we expected, If the filtered disk read procedure found “kdcom.dll” library reading, it replace real library
with the rootkit one, which is called “ldr32/64” (depending on architecture of the operation system). But
how rootkit recognize “kdcom.dll” (the kernel debugger main library)?

The answer is simple, |dr16 recognize kdcom.dll analyzing its PE Header. It first looks at Dos Header,
searching for signature Ox5A4D (‘MZ’ signature), then it looks at PE header signature 0x4550 (‘PE’). At this
time it determines if PE is in 32 bit or 64 bit format, and then it checks Export Directory Size.

seq000:0109 SearchFile: ; CODE XREF: seg000:00FDTj

seq000: 0109 ; seqBpB:01051j

seqBpB:08109 cmp word ptr es:[bx], S5A4Dh

seqB00:010E jnz loc_28E

seqfdn:=0112 mov di, es:[bx+3Ch] ; DI = dosHdr->e_lfaNew

seqB00:=6116 cmp word ptr es:[bx+di], 4556h ; PE

seqB00:6118B jnz loc_28E

seqB00:011F cmp word ptr es:[bx+di+18h], 108h ; Is this PE a 32 bit version? (flag 0x10B)
seqB00:0125 jnz short ReplaceKdComéh

seqbon: @127 cmp dword ptr es:[bx+di+’/Ch], OFaAh ; '-' ; if (ntHdr.OptHdr.DataDirectory.
5eg000:0130 jnz loc_28E ExportDirSize t= BxFA)
seqBof: 0134 mov si, 413h ;5 SI = "1dr32"

seqBBB:08137 mov cx, 6

seq000:613n jmp short ReadFile

seqBB@:813C ;
seqBev:613cC
seqipB:v13C ReplaceKdComébh:

seqb8B:013C [cmp dwordﬁgtr es:[bx+di+iCh], v!ﬂr];
seqBfB: 0146 jnz loc_2

seqgB00:614A nov si, 419h ;5 SI = "1ldré4"
seqB00:0814D mov cx, 6

Figure 3. “Kdcom.dll” Idr16 identification Code

If it discovered that Export Directory size is equal to kdcom’s one, it has found kdcom.dll and begins to
replace its content causing Windbg to fail connect to the infected host.

Infected MBR — Ldr16 Original MBR{—> Bootmgr
Ldr16 switches loader Ldr16 switches BCD
Nt Kernel block parameters and Winload flag to disable code
Idr32/64, drv32/64 replaces “kdcom.dll” integrity checks

Figure 4. TDL forged Master boot record and Ldr16 execution flow
Red color is for Rootkit component, blue is for original OS components

Now it’'s time to take a glance at real infected driver loader, the fake rootkit “kdcom.dll”...

32/64 BIT LOADER

In my own opinion, the most complex and clever part of the infection is the “Idr32/64” rootkit loader. From
now we'll refer this part of rootkit as “driver loader”, because it’s target is to load main infected driver. This
file is actually a dll that export all of the real original “kdcom.dll” functions. All exported functions do
nothing (in this way the debugging is impossible), except one, KdDebuggerlnitializel. This special procedure
loads and execute rootkit main kernel driver (its file name is “drv32/64” depends on system architecture
like “Idr32/64").

Copyright© 2011 by Andrea Allievi 3

public KdDebuggerInitialize1

KdDebuggerInitialize1 proc near ; DATA XREF: .text:off 180001088To
lea rcx, TDLLoadNotifyRoutine
jmp cs:PsSetCreateThreadNotifyRoutine

KdDebuggerInitialize1 endp

Figure 5. KdDebuggerlnitializel rootkit function

The load procedure is quite complex: KdDebuggerlnitializel rootkit procedure calls Ntoskrnl function
“PsCreateThreadNotifyRoutine” with a pointer to the rootkit loader Notify routine (TDLLoadNotifyRoutine).
This function begin execution after first kernel thread was created. TDL Notify routine then call
“loCreateDriver” to create a driver object with a loader initialization routine (referred as TDLDrvlInit).
TDLDriverlnit can’t load rootkit driver init function because Main system Disk driver isn’t still operative (and
it couldn’t read disk to extract Main driver). To successful resolve this trouble, TDLDriverlnit installs a
system callback routine (referred as TDLIOCallback) with the aid of nt function
“loRegisterPlugPlayNotification” (that is executed with EventCategoryDevicelnterfaceChange parameter
and GUID of the first hard-disk class drive, which is GUID_DEVINTERFACE_DISK as defined in “ntddstor.h”).
TDLIOCallback rootkit function is the main install procedure. It first read and decrypt rootkit File Table from
last sector of the hard-disk, it find main rootkit driver relative file system sector, it then read and decrypt
entire driver file. After these actions, loader must relocate the “just read” main driver, indeed it can’t use
system functions to load it (because they are easy to intercept and requires that driver has an entry in
system registry and reside in a physical file). Loader is so much complex, and has the ability to relocate the
entire driver in memory. The rootkit relocate function, after has done its job, and after having regular
modified driver object for the new driver, it calls real Rootkit Driver Entry Point.

Ldr16 replace
. “kdcom.dll” and KdDebuggerinizialize1
Wi nload switches kernel loader Idr32/64 function » Nt Kernel
block parameter

First Kernel
Thread Created

Ldr32/64 load and
Nt Kernel relocate entire TDLIOCallback TDLLoadNotifyRoutine
s bk o drv32/64, and calls Idr32/64 function Idr32/64 function
driver entry point

= System event

pe2l 2woiaq
J2aup yod ysip pieH

Figure 6. Main rootkit loader (Idr32/64 file) execution flow.
Red color is for Rootkit component, blue is for original OS components

Entire infection is now ready. Main driver (drv32/64) job is to forge disk port driver and to infect entire
system... but this is beyond the scope of our analysis paper...

Copyright© 2011 by Andrea Allievi 4

TDL4 - HOW TO DEBUG IT

After | have spent hours reverse engineering Ldr64 and Drv64 | found an elegant solution to this big trouble,
indeed “kdcom.dll” rootkit’s replacement produce a strong side effect: it disable kernel debugger
attachment support, either serial, usb, either firewire. Many tries | have done without change rootkit
integrity, but this is not a valuable solution. To renable kernel debugger is necessary to inhibit “kdcom.dIl”
substitution. These are instructions to do it:

STEP 1. From a cleaned system, it’s necessary to read TDL4 File System from an infected one. You have to
use a live cd system or a cleaned pc.

STEP 2. With a RC4 Decrypter decrypt entire File System using physical sector number as key (considering it
as DWORD) and extract all TDL4 files. To do this use my own graphical TDL4 Crypter (see the last page for
link).

STEP 3. Now you have to search in TDL4 “Idr16” disassembled code. To disassemble |ldr16 | suggest to use
the classical IDA, or Borg disassembler, a free handful open source disassembler (available here:
http://www.caesum.com/files/borg228.zip). The Borg project is dead but if | have spare time, | would like to
continue Borg project in my own, implementing support for 64 bit code... In my opinion Borg is a good
project. What does the reader think?

STEP 4. Find in disassembled code the instruction:
2666 81 b9 8c00fa 000000 cmp dword ptr es:[bx+di+8Ch], OFAh

Obviously this is the 64 bit “kdcom.dll” identification instruction, 32 bit one is a couple of code line above
(see Figure 4). You have to substitute this instruction with:

26 66 81 b9 8c 00 fadc 0000 cmp dword ptr es:[bx+di+8Ch], DCFAh
using an Hex Editor (I suggest UltraEdit). In this way we prevent rootkit loader to identify “kdcom.dll”. This

can be an issue because in this manner the rootkit will not start, but it's the best way...
Fé - 5 - - " 2 - . o M
* Borg Disassembler v2.28 : D:ATes\TDL3 e 4\TDL4 12-2010\idr16 [E=NEER
File Search Currentline Block JumpsandCalls View Other Help

:0109 ; XREFS First: 1000:00fd Nun .
:0109 loc_00000109:

10109 26813f4d5a cmp word ptr es:[bx]. Saddh

:010e 0£85£fc00 inz loc_0000020e

10112 268b7f3c nowv di, es:[bx+3ch]

;0116 2681395045 cmp word ptr es:[bx+di], 4550h

:011b 0f85ef00 jnz loc_0000020e

:011f 268179180b01 cmp word ptr es:[bx+di+18h], 10bh

D125 7515 inz loc_0000013c

0127 266681797cfa000000 Cmp dword ptr es:[bx+di+7ch]. 0fah

0130 0f85dan0 jnz loc_0000020e

0134 bel304 nov =i, 413h

0137 b90e00 nov cx, 06h

D13a ebl4 Inp loc_00000150

013c ; XREFS First: 1000:0125 Nun
013c loc_0000013c;

0146 0£85c400 loc_0000020e

014a bel904 =i, 41%h

014d cx, 06h

0150 ; XREFS First: 1000:013a Nun

- A s e

Processing Completed
4

Figure 7. Byte Pattern to replace, identified with Borg

STEP 5. After have saved the file, it’s now time to re-crypt entire Rootkit File System, and to write changes
back to infected hard disk. After that, start a debugging session in infected machine. Magically the debugger
now works but infection doesn’t load. To start infection is necessary to write ad hoc driver loader, linked
with 1dr64 rootkit file.

Copyright© 2011 by Andrea Allievi 5

STEP 6. Create |dr64 def file with the aid of the VS2008 “dumpbin” utility (I don’t explain here how to do it
because is a simple operation and because this guide is intended for an expert audience), and create a .lib
file with the VS2008 command: “lib /def:1dr64.def /0UT:1dr64.1ib” to linking our driver with Idr64.
Write a own driver with this driver entry:

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObject, PUNICODE_STRING pRegistryPath)

{
UNICODE_STRING drvName = {0};

NTSTATUS ntStatus = STATUS_SUCCESS;

DbgPrint("'TDSLoader — Driver Entry Point called, be aware that this will "
"load TDL4 infection in system!\r\n”);

// Break point for TDL4 debugging support
DebugBreak();

// Call rootkit Idr64 export function to launch entire infection
KdDebuggerlinitializel();

// ... lIstruzioni di inizializzazione del driver ...
pDriverObject->DriverUnload = DriverUnload;
return STATUS_SUCCESS;

}

Add Idr64 references (having care to rename loader file to “Idr64.dll”), compile all and move the 2 files
(driver and Idr64) to the infected machine. Before start debugging TDL4 it’s necessary to disable Driver
Signing enforcement. Break in the debugger and enter this command:

kd> eb ntlg ciEnabled O

If you don’t do it, Windows refuse to load our driver, because for some reason that | didn’t exam,
SeVal idate ImageHeader kernel function fail to validate Idr64 image, even if the environment is in debug
mode.

Copyright© 2011 by Andrea Allievi 6

#include <ntddk.h>
#include "TDSLoader.h”
s7#include <Wdmguid.h>

/7 Entry Point del driver
NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObject, PUNICODE_STRING pRegistryPath)
{

UNICODE_STRING drvName = {0}
NTSTATUS ntStatus = STATUS_SUCCESS:

DbgPrint ("TDSLoader — Entry Point del driver richiamatal");
DebugBreak():

/7 Tento di caricare i1l driver del rootkit
KdDebuggerInitializel ()

kd> db nt!g_ciEnabled

ff£££800° 0253058 00-00

fEf££800° 02230268 00-00

fff££800° 0243078 00-60
"02a30e88 00-40
"02a30e98 00-£0
‘02a30ea8 00-80
"02a30ebs 00-00
"02a30ect 00-00

kd> eb nt!g_ciEnabled 0

kd> g

Break instruction exception — code 80000003 {(first chance)

tdsloader!DriverEntry+0x38:

:fffff830‘034?d118 cc int 3

Figure 8. Our debug system is now ready to Debug entire TDL4, if the you step into
KdDebuggerlnitialize1 kernel function you will see TDL4 loader code
STEP 7. Install and start our driver. We are done! Debugger magically break at the Break point installed in
the driver source code. If the reader steps into KdDebuggerinitialize1 tdl function he will see all the TDL4
loader doing “dirty things”... Well done!

TIPS: Furthermore | suggest the reader to try insert “Oxcc” int 3 function opcode around Idr16 file, having
care to don’t touch early filtered hook code, but only code after the identify of bcd entry. If you enable
bootmgr and winload boot debugger you will see also Idr16 code doing other “dirty things”...

CONCLUSION

In this paper we have seen how to debug the damn TDL4 infection. | don’t covered main rootkit driver
because there were other good researchers that have covered it. By the way with all these information in
mind is less complex to write a custom TDL4 cleaner (like one that | wrote). With these skills | elaborate on
my own, | was able to exam almost all entire TDL4 infection, except its NDIS communication protocol (|
know this is a big and complex part), because | am completely ignorant about NDIS 6 programming
interfaces. If someone can point out me some interesting reading on NDIS6 | will appreciate very much.

Copyright© 2011 by Andrea Allievi 7

ACKNOWLEDGEMENTS

First of all | would like to say a big thanks to Marco Giuliani (from PrevX), that shows me a lot of interesting
tips about TDL3/4 and many others.

Also a thanks to all the staff of kernelmode.info, that provide us a lot of fresh payloads and is a big place to
exchange information.

... and obviously a great thanks to TDL4 authors, that entertain me in this analysis... I'd like to say them that
they made the great powerful rootkit that | ever see...

WHO AM 1

| am Andrea Allievi, nickname AaLl86, an Italian just graduated security researcher. You can contact me at
aall86@altervista.org. If the reader found some language mistakes please contact me, indeed English, as

stated earlier, is not my native language, and | am secure that this paper is full of grammar errors.

The reader can found all TDL4 related material in this link:
http://www.aall86.altervista.org/TDLRootkit/ (the site will become ready between 2 or 3 days, because
now | haven’t already post all the related material)

REVISION HISTORY
09/01/2011 - First Release

Last revision: 08/01/2011
Copyright© 2011 by Andrea Allievi

Copyright© 2011 by Andrea Allievi 8

