18/12/2011

Sinowal: the evolution of MBR Rootkit continues

Andrea Allievi
Advanced Malware Researcher
andrea.allievi@prevxresearch.com

Introduction

In these last weeks of year here at PrevX labs we found an interesting malware sample called Sinowal.knf.
This is the last evolution of famous MBR rootkit that begun its spreading in the year 2008. Rootkit in this
incarnation has evolved a lot. We start speaking about its way of starting up...

MBR Code - First stage of control
The MBR part of infection is different from the original MBR Rootkit because it uses another approach in Int13
hooking. The int13 hook part of infection is actually not in MBR.
Infected Mbr, after has read Volume Boot Record of Startup partition, it calculates rootkit sectors number
with this Algorithm:
DWORD GetRootkitSector (PMASTER_BOOT_RECORD mbr) {
PARTITION_ELEMENT * curPart = &mbr->PartitionTable.Primaryl;
DWORD rootkitSect = O;
for (int i = 0; i < 4; i++) {
if (rootkitSect < curPart[i].FreeSectorsBefore) {
rootkitSect = curPart[i].FreeSectorsBefore;
rootkitSect += curPart[i].TotalSectors;

}
J

return rootkitSect;

}

This is the first difference from the original MBR Rootkit. This time infected sector are placed immediately
after the partitions space, not at the end of disk. Infected Mbr reads 9 sectors (at calculated offset of hard
Disk) at real mode memory address 0000:7EQ0. It then looks if rootkit is correctly installed in system checking
for byte pattern 75 2F F3 A4 starting at 12 bytes of second sector just read. This is the rootkit signature.
These 9 sectors are organized in this way: First sector is the original System Master Boot Record, and others 8
ones are rootkit startup code.

Rootkit startup code sectors are made by a mix of real mode 16 bit and 32 bit protected mode code.
Execution is then transferred at address 0000:8000 (second rootkit sector). Here is where infection starts. First
of all, Mbr memory (at address 0000:7C00) is filled with original Master sector (that is in the first of 9 rootkit
sectors). Then rootkit installs Int13 hook handler, relocating itself at memory address 9F00:0000.

At this stage execution is released to original Mbr.

mov cx, 9
add bx, 2886h
call ReadFromDisk ; Read first 9 Sectors after this entire bootable
jb short ReleaseControlToUbr partition at 0:0x7E00
mov si, bx
add si, 26ch
lea dx, [si-6ch]
cmp dword ptr [si], BA4F32F75h ; Check if read sectors are infected
jz short loc_9E

ReleaseControlToUbr: ; CODE XREF: seg000:0079Tj

; seqgBeB:0085Tj ...

jp Far ptr EENENEN

loc_9E: ; CODE XREF: seq008:00971j
mov si, bx ; SI = Ox7E00
call dx ; Call Virus Entry point
jmp short ReleaseControlToVUbr

Figure 1. Sinowal Mbr code that reads its sectors and checks if are correctly infected

Real Mode Rootkit Int 0x13 Handler

Rootkit Int13 handler does quite the same stuff as the previous version of MBR Rootkit. It intercepts BIOS
“Read Sector” and “Extended Read Sector” functions to see if NTLDR (intended as NTLDR startup Code +
OSLOADER.EXE) is loaded, and then it forges NTLDR in 2 points:

1. NTLDR Calls to integrity checks function are deleted (filled with many NOP instruction)

2. OSLOADER main startup function B/OsLoader is forged after the call to BlLoadBootDrivers. In this way
rootkit 32 bit code is executed after all boot drivers are initialized (Disk port driver included, we will
see why this is important next in analysis...)

After these 2 steps are performed successfully rootkit real mode code restores original Int13 Handler and
return execution normally to Operation System Loader.

32 Bit rootkit OSLOADER code
After NT Loader has initialized all system boot drivers, as we have just seen, execution is transferred to 32 bit
rootkit code (at the end of second sector). This code performs the following steps:

1. Restore the modification done on BlOsLoader

2. Search in Osloader memory to find BlLoaderBlock symbol that is used by loader to maintain various
System information and also loaded driver list.

3. With BlLoaderBlock symbol it gets Nt Kernel base address and it start searching and modifying memory
of NT Kernel: it searches for lolnitSystem function call in Phaselinitialization kernel function and
replace it with a call to relocated NewlolnitFunction rootkit procedure. Rootkit indeed relocate part of
its code 1024 Bytes before the start of Nt Kernel address space (in our test systems this address is
mostly 0x806d9c00) and finally zeroes out its original loader code.

4. At this stage execution is release to original Os Loader and then to Nt Kernel.

mov al, oath ; "1i" 5 Search "mov eax,dword ptr [osloader?BlLoaderBlock]™
scasb

jnz short loc_9F17A

mov eax, [edi] ; EAX = BlLoaderBlock pointer

nov eax, [eax] ; EAX = BlLoaderBlock->NextEntry

mov eax, [eax] ; EAX = curltem->NextEntry

mov edi, [eax+18h] ; EDI = curltem->Basefddr

mov ecx, [edi+3Ch] ; ECX = curPe.e_lfanew

mnov ecx, [ecx+edi+50h] ; ECX = ntHdr->optHdr.SizeOfImage
call GetIoInitSystemRelAddress

jnz short Exit

Figure 2. Sinowal loader code that get NT Kernel Base address and lolnitSystem function address

Rootkit kernel mode code

NT Kernel begins its execution normally in function KiSystemStartup. KiSystemStartup orchestrate all system
initialization process: executive, Hal, kernel tables like processors IDT and various kernel subsystems. Phase 0
of boot process proceeds normally (see Windows Internals book for details), Phase 1 too, but until
initialization of 1/0 subsystem. System at this point calls rootkit NewlolnitSystem function. This implements a
quite interesting obfuscation trick. First of all, as seen in the previous modifications, it restores original Kernel
function modification. Then it places a special return address on the stack. In this way after original
lolnitSystem function ends its life, execution will be diverted on another rootkit procedure. We will see
afterward what this important function does.

Rootkit NewlolnitSystem now opens KelLoaderBlock internal variable, gets Boot Driver list, cycles between
loaded driver and get system Disk port driver entry point. How does rootkit know which is real Disk Port
Driver? It calculate a simple hash of its name and compares it with a hardcoded one (calculated by dropper at
installation time). If the 2 hashes match then driver is the right one. After it has found right driver, it apply a
deviation in target driver entry point function and returns execution at original /o/nitSystem function.

lolnitSystem procedure has in its body a call to loplnitializeBootDriver. This procedure loads all 32 bit boot
driver and calls for each one its EntryPoint function. As the reader has just guess, when the Disk port driver
entry point is called, the execution is again diverted to rootkit Disk Port driver new entry point.

After lolnitSystem terminates its own work, the most important rootkit function is also called.
AllocateAndinstallRootkitDrv, as the name implies, has the main rule in startup procedure: it extracts and
installs real protected Sinowal Driver.

Sinowal new Disk Port Driver Entry point

Rootkit new Port driver entry point function does nothing special. It restores original driver entry point
modification and then it uses obfuscation similar to NewlolnitSystem one: original driver entry point return
address is changed to point to a selected rootkit function. In this manner execution first return to original
driver initialization procedure, and, at the end, when driver is completely operative, to
“InstallPortDrvDeviation” rootkit function.

InstallPortDrvDeviation rootkit procedure has the responsibility to apply first Disk Port Driver IRP hook. Indeed
it gets Driver IRP_MJ_SCSI Major Function pointer, save it, and replace with a forged one. This forged new Irp
handler does nothing except call original, just saved, handler.

| would like to remember the reader that IRP_MJ_SCSI handler is responsible to manage SCSI Packets and is
the lower procedure that administrates disk 1/0, talking directly with real hardware (mostly with IN and OUT
machine instruction).

With the aim to install new Irp Handler, rootkit relocates itself calling ExAllocatePool Nt function. Before
continue in analysis we have to speak about Rootkit APl resolver procedure. Indeed rootkit startup code
doesn’t know which address corresponds to each individual APl exported by Ntoskrnl. To resolve them rootkit
uses a clever method...

GetNtKrnlAndResolveFuncs rootkit procedure gets, from main processor IDT, Interrupt service routine number
0 address, does some mathematical operations and gets Nt kernel base address. Now it has to resolve 5
needed exported functions. To do so it starts parsing Nt kernel export address table: for each exported
function name it calculates a simple hash (like NewlolnitSystem procedure) and compares it with a hardcoded
one. If 2 hashes match then exported function address is copied from Nt Export Table to Rootkit import table.
dd 37067E062h
dd 9D489D1Fh
dd 58586D92h
dd 6DCD44CSFh

dd 3888F9Dh
dd 84FCD516h

ExAllocatePool function hash
ExFreePool function hash
KeDelayExecutionThread function hash
NtClose function hash

NtCreateFile function hash
NtReadFile function hash

Figure 3. Sinowal startup code small Import Address Table

AllocateAndInstallRootkitDrv Rootkit function

This is the most important piece of rootkit startup code. Its purpose is to extract and run real Rootkit Driver
and starts its execution after lo/nitSystem has done its job...

First of all, if rootkit IAT hasn’t already been resolved, it resolves Nt Functions address and builds its IAT.

It then builds data structures needed to open a handle to boot disk device, and gets a handle to it with
NtCreateFile. Now it reads original system Mbr. From system partition table it calculates rootkit sectors
number in the same manner as seen in infected Mbr, and adds 25. The resulting number is where real rootkit
driver is stored. Loader code reads its first 16 sectors (8 Kbytes), analyzes its PE Header and then allocates 2
kernel buffers large as SizeOfImage PE attribute. Loader code reads entire driver from disk (512 sectors, 256
Kbytes) and places it in first buffer, in second buffer instead it stores relocate driver, correcting pointers,

rebasing each section, resolving driver IAT,... At the end, when all this stuff is done, the second buffer is freed
with ExFreePool, and rootkit driver entry point is called. Rootkit driver begins its life now, and does a lot of
stuff... but this is another story... (not covered in this analysis)

add edx, esi ; EDX = ntHeaders

nov ebx, esi ; EBX = drvBaseAddr

nov ecx, [edx+54h] ; ECX = SizeOfHeaders

nov edi, [esp+4] ; EDI = First Allocated Buffer

pusha

rep mousb ; Copy headers to first buffer

popa

movzx ecx, word ptr [edx+6] ; ECX = NumberOfSections

push edx

add edx, OF8h ; "°" ; EDX = ImageFirstSection{ntHeaders)
CopySection: ; CODE XREF: AllocateAndStartRootkitDru+1A1}j

pusha

add esi, [edx+14h] ; ESI = thisSect.RawAddr Real Offset

add edi, [edx+8Ch] ; EDI = thisSect.VUirtualAddress

nouv ecx, [edx+16h] ; ECX = thisSect.RawSize

jecxz short NextSection

rep mousb ; Copy this section in right place
NextSection: ; CODE XREF: AllocateAndStartRootkitDru+199Tj

popa

add edx, 28h ; '(" ; Move to next Section

loop CopySection

Figure 4. Rootkit loader that relocate its main driver

After rootkit driver is initialized, loader code ends its life: it frees used resources and closes handle to system
disk device. Its job is now done: rootkit is loaded and fully functional.

Sinowal Rootkit main driver: a quick glance

Sinowal.knf rootkit driver is a large executable that does quite the same things just seen for the previous MBR
Rootkit version. It uses a proprietary packer to hide its real code. The clever interesting thing to analyze is the
method it uses to hide its sectors from disk. The technique has really evolved, this time is even more powerful
than that one used in TDL rootkit. First inspection of an infected system doesn’t reveal any kernel hook or
internal deviation. Security utility like Gmer or Rootkit Unhooker doesn’t find any kernel alteration, except for
a strange driver and some user mode deviation, but no modification of disk class/port driver...

B GMER 1.0.15.15641 9(=1t3
Rootkit/Malware i 3> I
 Type | Name | Vabue | @ system
? E"PPEZa@ La sintassi del nome del fle, delladite.. & gactions
7 system32\diivers\xpsec.sys Impossibile trovate il percorso specific. .
? system32drivers\xepip. sys Impossibile trovare il petcorso specific.. ¥ IAT/EAT
et CAWINDOWSAE splorer EXE[1480] ADVAPIZ2 dilCryptDestroyiey 77F53ESC 7 Bytes JMP 024B28F1 W Devices
et CAWINDOWSAE splorer, EXE[1480] ADVAPI 32 dl CryptD eciypt TIFS4109 7 Bytes JMP D24B28AE [~
text C:AWINDOWSAE splorer, EXE [1480] ADVAPI 32 diICiyptEncrypt 77FSE340 7 Bytes JMP 02482872 V' Modules
Jext CAWINDOWSAE xplorer EXE[1480] W5 2_32 dilclosesocket TI1AIIEZE 5Bytes JMP 024B2857 W Processes
text C:AWINDOWS\E splorer, EXE[1480] W52_32 dllsend T1A34C27 5 Bytes JMP D24B26E3 " The
text C:AWINDOWS\E xplorer. EXE[1480] WS52_32.dI'WSARecy 71A34CB5 5 Bytes JMP 024B27D5 eads
test C:AWINDOWSAE wplorer. EXE[1480] W52_32 dllrecy 71A3676F 5 Bytes JMP 02482718 ¥ Libraries
et C:AWINDOWSAE wplorer EXE[1480] W5 2_32.dINVSASend T1A36EFA 5 Bytes JMP 02482753 r 2
test C:AP iWMware\WMware Took\VMwareUserexe[1928)A.. 77FS9ESC 7 Bytes JMP 016D28F1 Services
ext C:APr iNYMware\WMware Tools\WM Userexe[1928]A.. 77F54109 7 Bytes JMP D16D28AE [~ Registry
st C:A\Programmi\vMware\Viware Tools\VMwarellserexe[1928) A.. 77FSE340 7 Bytes JMP 016D 2872 rF
et C:\Programmi\VMware\VMware Tools\WVMwarelser exe[1928)W... 7T1A33E2B 5 Bytes JMP 01602857 es
st C:\Programmi\vMware\Vidware Tools\VMwareUserexe{1928)W... 7T1A34C27 5 Bytes JMP D16D26E3 [[
text C:\ProgrammitVMware\WMware Tools\VMwareUserexe[1928]'W... 71A34CB5 5 Bytes JMP 016D27D5
text CAPY iWMware\WMware Tools\WMwarellser.exe[1928]'W... 7143676F 5 Bytes JMP 016D271B
ext C:APn i M Widware Tools\WM Userexe[19281'W... 71A368FA 5Bvtes JMP 016D2753
F
[~ Show al
o |
Save
[0K]| Cancel |

Figure 5. Gmer security utility running on an infected machine.

Noteworthy is the fact that no Disk driver modification is showed

To real show what happen in the infected system is necessary to run Windbg and have a great attention... Also
with a debugger is actual very difficult to find out what is wrong on Disk stack. A deep analysis of system and
rootkit code has revealed this interesting trick:

Command - Kerel ‘compipe port=\\\pipe\com_Lresets=0' - WinDbg:6.120002633 AMD64 0 ol B
kd> !drvobj 863a9730 2 -
Driver object (863a9730) is for:

“Driversvmscsi

DriverEntry: f7alabbe vmscsi

DriverStartlo: £743b40e SCSIPORT!ScsiPortStartlo
DriverUnload: £744614a SCSIPORT!ScsiPortUnload
#dddDevice: £74460de SCSIPORT!ScsiPortiddDevice

Dispatch routines:

] IRP_MJ_CREATE £743844c SCSIPORT !ScsiPortGlobalDispatch
01] IRP_MJ_CREATE_NAMED_PIPE 804fcS54a nt!IopInvalidDeviceRequest
02] IRP_MJ_CLOSE £743844c SCSIPORT!ScsiPortGlobalDispatch
03] IRP_MJ_READ 804fcS4a nt ! IopInvalidDeviceRequest
04] IRP_MJ_WRITE 804fcS4a nt ! IopInvalidDeviceRequest
05] IRP_MJ_QUERY_ INFORMATION 804fcS4a nt!IopInvalidDeviceRequest
06] IRP_MJ_SET_INFORMATION 804fcS4a nt ! IopInvalidDeviceRequest
07] IRP_MJ_QUERY_EA 804fcS54a nt ! IopInvalidDeviceRequest -
08] IRF_MJ_SET_EA 804fcS4a nt!IopInvalidDeviceRequest
09] IRP_MJ_FLUSH_BUFFERS 804fch4a nt!IopInvalidDeviceRequest
0a] IRP_MJ_QUERY_VOLUME_INFORMATION 804fcSda nt ! IopInvalidDeviceRequest
0b] IRP_MJ_SET_VOLUME_INFORMATION 804fchda nt!IopInvalidDeviceRequest
Oc] IRP_MJ_DIRECTORY_CONTROL 804fcS54a nt ! IopInvalidDeviceRequest
0d] IRP_MJ_FILE_SYSTEM_CONTROL 804£fcS54a nt ! IopInvalidDeviceRequest
O0e] IRP_MJ_DEVICE_CONTROL £743844c i POET | Po phalDispatch
0f] IRP_MJ_INTERNAL DEVICE_CONTROL 8058526d nt ! JoGetDnaiddapter+0x155
10] IRP_MJ_SHUTDOWN 804fcS4a ntlloplnvalidDeviceRequest
11] IRP_MJ_LOCK_CONTROL 804fcS4a nt ! IopInvalidDeviceRequest
[12] IRP_MJ_CLEANUP 804fcS4a nt ! IopInvalidDeviceRequest -

“ {1 3

Figure 6. Windbg information gathered from system disk port driver

Disk port IRP_MJ_SCSI (same as IRP_MJ_INTERNAL_DEVICE_CONTROL) handler function point to a Nt kernel
function that a further inspection reveals that is totally unrelated to disk driver. What’s wrong with this?

kd> u 8058526d

nt!IoGetDnaAdapter+0x155:

8058526d ££1574e85480 call dword ptr [nt!HalDispatchTable+0x3c (8054e874)]
80585273 894Sfc nov dwvord ptr [ebp-4].eax

The memory pointed by Irp Handler contains a call to an entry in Hal Dispatch Table. Hal Dispatch Table is

used by Nt Kernel to memorize address of some important Hal functions. Some entries in this table are not
used. If we further inspect about infected system Hal Dispatch Table we encounter something like:

kd> dds nt!HalDispatchTable + 38 13

80542870 806f32cc hal!HalilInitPowerManagement
8054e874 (86314000)

80542878 806£2d50 hall!HalacpiGetInterruptTranslator

Address 0x8631D00 is in rootkit code address space and contains the real rootkit filter routine. Hook an Irp
Handler function in this way is a very clever strategy. Indeed it prevents every security software to point out
any kernel driver alteration, because the hook pointer is in Nt kernel address space and pointto a
documented symbol like for example loplnvalidDeviceRequest. To correct recognize this type of rootkit it’s
necessary to implement a really specific and particular strategy...

Conclusions

We have seen an interesting evolution of Mbr Rootkit that, even if uses a quit old strategy to load itself, is still
powerful and very hard to find. The main weak point of its implementation is that a simple “FIXMBR C:“ typed
in a recovery console of an infected system can remove the entire rootkit (actually only mbr, but it’s obviously
that if loader code doesn’t get executed, inactive rootkit driver become useless). However real mode Int13
hook has been moved in a different sector form Mbr, and the concept behind is a good choice because rootkit
in this way can evade some old BIOS antivirus that recognize this behavior as malicious if done in MBR sector.
Also the disk hooking method is still powerful and hard to find...

In this analysis we don’t have covered rootkit main driver feature but we have focused only on Startup
method. Our remover is able to correct identify and destroy this kind of infection.

WHO AM 1

I am Andrea Allievi, nickname AaLI86, an Italian graduated security researcher currently working for PrevX
Research team. You can contact me at aall86@altervista.org. If the reader found some language mistakes
please contact me, indeed English, is not my native language, and | am secure that this paper is full of
grammar errors.

REVISION HISTORY
19/12/2011 - First Release

Andrea Allievi
Advanced Malware Researcher

